首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1368篇
  免费   179篇
  国内免费   80篇
  2023年   37篇
  2022年   29篇
  2021年   50篇
  2020年   59篇
  2019年   59篇
  2018年   58篇
  2017年   52篇
  2016年   70篇
  2015年   64篇
  2014年   62篇
  2013年   74篇
  2012年   62篇
  2011年   62篇
  2010年   48篇
  2009年   70篇
  2008年   70篇
  2007年   67篇
  2006年   60篇
  2005年   54篇
  2004年   50篇
  2003年   45篇
  2002年   45篇
  2001年   34篇
  2000年   45篇
  1999年   34篇
  1998年   38篇
  1997年   32篇
  1996年   28篇
  1995年   20篇
  1994年   18篇
  1993年   15篇
  1992年   15篇
  1991年   15篇
  1990年   11篇
  1989年   11篇
  1988年   9篇
  1987年   10篇
  1986年   10篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1627条查询结果,搜索用时 15 毫秒
11.
Several studies demonstrated that abandonment changes the functional composition of grasslands; nevertheless, little is known about the effects of grassland abandonment on the flowering-related functional pattern. We hypothesized that invasion by tall grasses affects this pattern. We counted the number of flowering shoots per species at five times during the growing season, in 80 plots placed in mown and in abandoned grasslands (central Apennines), and assessed the differences in the trait composition of flowering species between the two treatments. The selected traits were linked to resource acquisition and stress tolerance strategies. Our results indicated that abiotic environmental control is prevalent in determining the phenological pattern in both conditions and in accordance with the phenological “mid-domain hypothesis”. We demonstrated that when the dominant species is a tall grass with competitive behaviour, the magnitude of this phenomenon is amplified due to the abiotic changes yielded by the tall grass invasion. Indeed, in the central and late phases of the growing season (when invasive tall grasses are growing and blooming), abandoned grasslands were marked by a set of traits devoted to stress tolerance or underlying a long reproductive cycle or linked to competition for light.  相似文献   
12.
The abundance of an mRNA encoding an HMG1/2 protein from Pharbitis nil (HMG1) has been previously shown to be regulated by light and an endogenous rhythm in cotyledons. A second Pharbitis nil HMG cDNA (HMG2) was characterized. The sequence of HMG2 was 82% and 86% identical to HMG1 at the nucleotide and amino acid level, respectively. As with HMG1, HMG2 mRNA was detected in all vegetative tissues and was most abundant in roots. However, unlike HMG1, HMG2 mRNA abundance did not increase upon transfer of cotyledons to darkness and did not exhibit regulation by an endogenous circadian rhythm when maintained in continuous darkness over a 68 h period. Similarly, while the abundance of HMG1 mRNA during a dark period that induced photoperiodically controlled flowering was dramatically affected by brief light exposure (night break), this treatment had no effect on HMG2 mRNA abundance. Collectively, these data are consistent with a role of HMG1 in contributing to the circadian-regulated and/or dark-regulated gene expression with constitutive expression of HMG2 playing a housekeeping role in the general regulation of gene expression in Pharbitis nil cotyledons.  相似文献   
13.
Fruit trees have a long juvenile phase. For example, the juvenile phase of apple (Malus × domestica) generally lasts for 5–12 years and is a serious constraint for genetic analysis and for creating new apple cultivars through cross‐breeding. If modification of the genes involved in the transition from the juvenile phase to the adult phase can enable apple to complete its life cycle within 1 year, as seen in herbaceous plants, a significant enhancement in apple breeding will be realized. Here, we report a novel technology that simultaneously promotes expression of Arabidopsis FLOWERING LOCUS T gene (AtFT) and silencing of apple TERMINAL FLOWER 1 gene (MdTFL1‐1) using an Apple latent spherical virus (ALSV) vector (ALSV‐AtFT/MdTFL1) to accelerate flowering time and life cycle in apple seedlings. When apple cotyledons were inoculated with ALSV‐AtFT/MdTFL1 immediately after germination, more than 90% of infected seedlings started flowering within 1.5–3 months, and almost all early‐flowering seedlings continuously produced flower buds on the lateral and axillary shoots. Cross‐pollination between early‐flowering apple plants produced fruits with seeds, indicating that ALSV‐AtFT/MdTFL1 inoculation successfully reduced the time required for completion of the apple life cycle to 1 year or less. Apple latent spherical virus was not transmitted via seeds to successive progenies in most cases, and thus, this method will serve as a new breeding technique that does not pass genetic modification to the next generation.  相似文献   
14.
In forest tree species, the reproductive phase is reached only after many years or even decades of juvenile growth. Different early flowering systems based on the genetic transfer of heat‐shock promoter driven flowering‐time genes have been proposed for poplar; however, no fertile flowers were reported until now. Here, we studied flower and pollen development in both HSP::AtFT and wild‐type male poplar in detail and developed an optimized heat treatment protocol to obtain fertile HSP::AtFT flowers. Anthers from HSP::AtFT poplar flowers containing fertile pollen grains showed arrested development in stage 12 instead of reaching phase 13 as do wild‐type flowers. Pollen grains could be isolated under the binocular microscope and were used for intra‐ and interspecific crossings with wild‐type poplar. F1‐seedlings segregating the HSP::AtFT gene construct according to Mendelian laws were obtained. A comparison between intra‐ and interspecific crossings revealed that genetic transformation had no detrimental effects on F1‐seedlings. However, interspecific crossings, a broadly accepted breeding method, produced 47% seedlings with an aberrant phenotype. The early flowering system presented in this study opens new possibilities for accelerating breeding of poplar and other forest tree species. Fast breeding and the selection of transgene‐free plants, once the breeding process is concluded, can represent an attractive alternative even under very restrictive regulations.  相似文献   
15.
Soybean (Glycine max (L.) Merr.) has been disseminated globally as a photoperiod/temperature-sensitive crop with extremely diverse days to flowering (DTF) and days to maturity (DTM) values. A population with 371 global varieties covering 13 geographic regions and 13 maturity groups (MGs) was analyzed for its DTF and DTM QTL-allele constitution using restricted two-stage multi-locus genome-wide association study (RTM-GWAS). Genotypes with 20 701 genome-wide SNPLDBs (single-nucleotide polymorphism linkage disequilibrium blocks) containing 55 404 haplotypes were observed, and 52 DTF QTLs and 59 DTM QTLs (including 29 and 21 new ones) with 241 and 246 alleles (two to 13 per locus) were detected, explaining 84.8% and 74.4% of the phenotypic variance, respectively. The QTL-allele matrix characterized with all QTL-allele information of each variety in the global population was established and subsequently separated into geographic and MG set submatrices. Direct comparisons among them revealed that the genetic adaptation from the origin to geographic subpopulations was characterized by new allele/new locus emergence (mutation) but little allele exclusion (selection), while that from the primary MG set to emerged early and late MG sets was characterized by allele exclusion without allele emergence. The evolutionary changes involved mainly 72 DTF and 71 DTM alleles on 28 respective loci, 10–12 loci each with three to six alleles being most active. Further recombination potential for faster maturation (12–21 days) or slower maturation (14–56 days) supported allele convergence (recombination) as a constant genetic factor in addition to migration (inheritance). From the QTLs, 44 DTF and 36 DTM candidate genes were annotated and grouped respectively into nine biological processes, indicating multi-functional DTF/DTM genes are involved in a complex gene network. In summary, we identified QTL-alleles relatively thoroughly using RTM-GWAS for direct matrix comparisons and subsequent analysis.  相似文献   
16.
转录因子在调控植物生长、发育及环境适应性等方面发挥重要作用。具有B-box结构域的一类锌指结构转录因子称为BBX,它们通过调控基因转录,与同类或其他转录因子的互作参与植物光形态建成、花发育、避荫效应、植物信号转导以及非生物和生物逆境响应等。文中从BBX蛋白结构、分类以及其功能方面对该类转录因子在植物中的作用进行了综述。  相似文献   
17.
Plants show remarkable developmental plasticity to survive in a continually changing environment. One example is their capability to adjust flowering time in response to environmental changes. Ambient growth temperature, which is strongly affected by global temperature changes, has a profound effect on flowering time. However, those effects have been largely ignored in research. Recent molecular genetic studies ofArabidopsis as a model system have implicated several genes, and have identified a molecular mechanism underlying the responses of plants to changes in ambient temperature. Here, we describe recent discoveries related to ambient temperature signaling and the control of flowering time inArabidopsis. We also discuss current perspectives on how plants sense and respond to such changes.  相似文献   
18.
Flowering requirements of Scandinavian Festuca pratensis   总被引:1,自引:0,他引:1  
Flowering requirements of three Scandinavian cultivars of Festuca pratensis Huds, have been studied in controlled environments. At 3 and 6°C, primary induction was independent of photoperiod, while short days (8 h) were more effective than long days (24 h) at higher temperatures. The critical temperature for induction was about 15°C in short days and about 12°C in long days. Saturation of induction required 18–20 weeks of exposure to optimal conditions. At temperatures below 12°C both induction and initiation of inflorescence primordia took place in long days, while a transition to long days was required for inflorescence initiation after primary induction in short days. A minimum of 8 long-day cycles were required for flowering of plants primary induced in short days and saturation of flowering required more than 16 cycles. The critical photoperiod for secondary induction was about 13 h. High temperature (21°C) had some devernalization effect in primary induced plants, suppressing flowering compared with 15°C.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号